The Linear Arrangement Problem Parameterized Above Guaranteed Value
نویسندگان
چکیده
A linear arrangement (LA) is an assignment of distinct integers to the vertices of a graph. The cost of an LA is the sum of lengths of the edges of the graph, where the length of an edge is defined as the absolute value of the difference of the integers assigned to its ends. For many application one hopes to find an LA with small cost. However, it is a classical NP-complete problem to decide whether a given graph G admits an LA of cost bounded by a given integer. Since every edge of G contributes at least one to the cost of any LA, the problem becomes trivially fixed-parameter tractable (FPT) if parameterized by the upper bound of the cost. Fernau asked whether the problem remains FPT if parameterized by the upper bound of the cost minus the number of edges of the given graph; thus whether the problem is FPT “parameterized above guaranteed value.” We answer this question positively by deriving an algorithm which decides in time O(m+ n+ 5.88) whether a given graph with m edges and n vertices admits an LA of cost at most m + k (the algorithm computes such an LA if it exists). Our algorithm is based on a procedure which generates a problem kernel of linear size in linear time for a connected graph G.
منابع مشابه
Parameterized Constraint Satisfaction Problems: a Survey
We consider constraint satisfaction problems parameterized above or below guaranteed values. One example is MaxSat parameterized above m/2: given a CNF formula F with m clauses, decide whether there is a truth assignment that satisfies at least m/2 + k clauses, where k is the parameter. Among other problems we deal with are MaxLin2-AA (given a system of linear equations over F2 in which each eq...
متن کاملDelay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems
In this paper, the problem of delay dependent robust asymptotically stable for uncertain linear time-variant system with multiple delays is investigated. A new delay-dependent stability sufficient condition is given by using the Lyapunov method, linear matrix inequality (LMI), parameterized first-order model transformation technique and transformation of the interval uncertainty in to the norm ...
متن کاملOn guaranteed cost control of neutral systems by retarded integral state feedback
In this paper, the guaranteed cost control problem for a class of neutral delay-differential systems with a given quadratic cost functions is investigated. The problem is to design a memory state feedback controller such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound. Some criteria for the existence of such c...
متن کاملParameterized Integer Quadratic Programming: Variables and Coefficients
In the Integer Quadratic Programming problem input is an n× n integer matrix Q, an m × n integer matrix A and an m-dimensional integer vector b. The task is to find a vector x ∈ Z minimizing xQx, subject to Ax ≤ b. We give a fixed parameter tractable algorithm for Integer Quadratic Programming parameterized by n+α. Here α is the largest absolute value of an entry of Q and A. As an application o...
متن کاملParameterizing above or below guaranteed values
We consider new parameterizations of NP-optimization problems that have nontrivial lower and/or upper bounds on their optimum solution size. The natural parameter, we argue, is the quantity above the lower bound or below the upper bound. We show that for every problem in MAX SNP, the optimum value is bounded below by an unbounded function of the input-size, and that the above-guarantee paramete...
متن کامل